
(3)
2 2

2 2

a a x

a a x
dxdy

−

− − −
∫ ∫ (4)

( )2 2

0 0

x ye dx dy

The triple integral is defined in a manner entirely analogous to the definition of the double
integral.

Let F(x, y, z) be a function of three independent variables x, y, z defined at every point in
a region of space V bounded by the surface S. Divided V into n elementary volumes δV1, δV2,
…, δVn and let (xr, yr, zr) be any point inside the rth sub division δVr. Then, the limit of the
sum

                            ( )
1

, ,
n

r r r r
r

F x y z v
=

δ∑ , …(1)

if exists, as n → ∞ and δVr → 0 is called the
‘triple integral’ of R(x, y, z) over the region V, and
is denoted by

                  ( ), ,F x y z dV∫ ∫ ∫ …(2)

In order to express triple integral in the
‘integrated’ form, V is considered to be sub-
divided by planes parallel to the three coordinate
planes. The volume V may then be considered as
the sum of a number of vertical columns extending
from the lower surface say, z = f1(x, y) to the upper
surface say, z = f2(x, y) with base as the elementary
areas δAr over a region R in the xy-plance when all
the columns in V are taken.

On summing up the elementary cuboids in the
same vertical columns first and then taking the sum
for all the columns in V, it becomes

                            ( ), ,r r r r
r r

F x y z z A
 δ δ  

∑ ∑ …(3)

with the pt. (xr, yr, zr) in the rth cuboid over the element δAr.
When δAr and δz tend to zero, we can write (3) as

                     ( )( )
( )=

=
 
  ∫∫ 2

1

,
, , ,z f x y

z f x y
R

F x y z dz dA

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

For evaluation purpose, ( ), ,
V

F x y z dV∫ ∫ ∫ …(1)

is expressed as the repeated integral

Z

O Y

X

Z f x y = ( , )2

R 

δAr

Z f x y = ( , )1

36

∞ ∞

∫ ∫ − +

4.8 TRIPLE INTEGRAL (PHYSICAL SIGNIFICANCE)

Fig. 4.48

4.9. EVALUATION OF TRIPLE INTEGRALS



                             ( )2 2 2

1 1 1
, ,x y z

x y z F x y z dzdy dx∫ ∫ ∫ …(2)

where in the order of integration depends upon the limits.
If the limits z1 and z2 be the functions of (x, y); y1 and y2 be the functions of x and x1, x2 be

constant, then

                             ( )
( )

( )

( )

( ) ==φ=

= =φ =

  
=      

∫ ∫ ∫
22

1 1

,

,
, ,

z f x yy xx b

x a y x z f x y
I F x y z dz dy dx …(3)

which shows that the first F(x, y, z) is integrated with respect to z keeping x and y constant
between the limits z = f1(x, y) to z = f2(x, y). The resultant which is a function of x, y is
integrated with respect to y keeping x constant between the limits y = f1(x) to y = f2(x).
Finally, the integrand is evaluated with respect to x between the limits x = a to x = b.

Note: This order can accordingly be changed depending upon the comfort of integration.

Example 36: Evaluate 
+

+ +∫ ∫ ∫ .
x ya x

x y ze dz dy dx
0 0 0

                             ( ) ( )
00 0

,
a x x y

x y zI e dy dx
++ + =  ∫ ∫ [Here (x + y) = a, (say), like some constant]

                                ( ) ( ) ( ) 0

00

a x
x y x y x ye e dydx+ + + + + = − ∫ ∫

                                ( ) ( )2

0 0

a x
x y x ye e dydx+ + = − ∫ ∫

                             
2 2

0 0

,
2 1

xa x y x ye e dx
+ + = −  ∫  (Integrating with respect to y, keeping x constant)

                               
4 2 2

0 2 1 2 1

a x x x xe e e e dx
    = − − −        ∫

On integrating with respect to x,

                                
4 2 2

08 2 4 1

ax x x xe e e e = − − +  

                                
4 2 2 1 1 1 1
8 2 4 8 2 4

a a a
ae e e e   = − − + − − − +     

⇒           
4

23 3 .
8 4 8

a
a aeI e e = − + −  

Example 37: Evaluate 
−π θ

θ∫ ∫ ∫
/ sin

.
a r

a
a

r dr d dz

2 2

2

0 0 0

Multiple Integrals and their Applications 3 7

                                                        

Solution: On integrating first with respect to z, keeping x and y constants, we get



Solution: On integrating with respect to z first keeping r and θ constants, we get

                             ( )
2 2

/2 sin

00 0

a ra
aI z r dr d
−π θ

= θ∫ ∫
                                ( )/2 sin

2 2

0 0

1 a
a r r dr d

a

π θ
= − θ∫ ∫

                                
sin/2 2 4

2

0 0

1 ,
2 4

a
r ra d

a

θπ  = − θ  ∫ (On integrating with respect to r)

                                
/2 2 2 2 4 4

0

1 sin sin
2 4

a a a d
a

π  ⋅ θ θ= − θ  ∫

   
3 2

2 4

0
2sin sin

4
a d

π

=  θ − θ θ ∫

    
3 1 3 12 ,

4 2 2 4 2 2
a π ⋅ π = ⋅ ⋅ − ⋅ ⋅ 

  
/2

0

( 1) ( 3)
sin ;only if  is even

( ) ( 2) 2
p p p

x dx p
p p

π − ⋅ − … π = ×  ⋅ − …∫

∴                          
3 33 51

4 2 8 64
a aI  π π = − =    

Example 38: Evaluate log∫ ∫ ∫
log

.
xe y e

z dz dy dx
1 0 1

Solution: 
log

1 0 1
log

xe y e
zdz dxdy

 
  ∫ ∫ ∫

[Here z = f(x, y) with z1 = 1 and z2 = ex + 0y

                                 
log

1 0 1
log 1

xe y e
z dzdx dy

 = ⋅  ∫ ∫ ∫
       Ist         IInd
       fun.      fun.

                                
log

1 0 1

1log
xee y

z z z dz dx dy
z

 = × −  ∫ ∫ ∫

                                ( ) ( )
log

11 0
log 1 log1

xe y ex xe e z dx dy = − ⋅ − ∫ ∫

38



                                ( )
log

1 0
1

ye
x xxe e dx dy  = − −   ∫ ∫

                                ( )( )log

1 0
1 1

e y
xx e dx dy=  − +  ∫ ∫

                                
log

01
2

e yx xxe e x dy=  − +  ∫
                                ( ) ( )

1
1 log 2 1

e
y y y dy = + ⋅ + − ∫

        I II
 function     function

On integrating by parts,

                             
2 2 2

1
1 1

21log 2
2 2 2

e e
ey y y

I y y y dy y
y

       = × + − ⋅ + + −            
∫

                                ( ) ( )
2

2

1

1(log ) log 1 1 1 2 2 1
2 2 2

e yee e dy e e
     = + − ⋅ + − + + − − −        ∫

                                
22

2

1

2 1
2 4

e
ye e y e e

   = + − + + − −    

                                
2 2

21 1 2 1
2 4 4
e ee e e e = + − − + + + − −  

                                ( )21 1 8 3 .
4

e e = + −  

Example 39: Evaluate ( )
1

1 0
.

z x z

x z
x y z dx dy dz

+

− −
+ +∫ ∫ ∫

Solution: Integrating first with respect to y, keeping x and z constant,

                             
21

1 0 2

x zz

x z

y
I xy yz dx dz

+

− −

  = + +    ∫ ∫

                                ( )1 2
2

1 0
4 2zx z dx dz

−

 = +  ∫ ∫

                                
1 2

2

1 0

4 2
2

z
xz z x dz

−

 = + ⋅ ⋅  ∫
                                

1 2
2

1
4 2

2
zz z z dz

−

 = ⋅ + ⋅  ∫

                                

11 4
3

1 1

4 4 0
4
zz dz

− −
= = =∫
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ASSIGNMENT 6

Evaluate the following integrals:

(1)
1 2 2

2

0 0 1
x yzdxdydz∫ ∫ ∫ (2) ( )2 2 2

a b c

a b c
x y z dxdydz

− − −
+ +∫ ∫ ∫

(3)
24 2 4

0 0 0

z z x
dy dx dz

−

∫ ∫ ∫ (4)
log 2 log

0 0 0

x x y
x y ze dzdydx

+
+ +∫ ∫ ∫

(Geometrical Interpretation of the Double Integral)
One of the most obvious use of double integral is the determination of volume of solids

viz. ‘volume between two surfaces’.
If f(x, y) is a continuous and single valued function

defined over the region R in the xy-plane with z = f(x, y)
as the equation of the surface. Let ¬  be the closed curve
which encloses R. Clearly, the surface R (viz. z = f(x, y))
is the orthogonal projection of S(viz z = F(x, y)) in the
xy-plane.

Divided R into elementary rectangles of area δxδy
by drawing lines parallel to the axis of x and y. On each
of these rectangles errect prisms having their lengths
parallel to the z-axis. The volume of each such prism is
zδx δy.

(Division of R is performed with the lines x = xi (i = 1,
2, …, m) and y = yj(j = 1, 2, …, n). Through each line
x = xi, pass a plane parallel to yz-plane, and through
each line y = yj, pass a plance parallel to xz-plane. The
rectangle ∆Rij whose area is ∆Aij = ∆xi ∆yj will be the
base of a rectangle prism of height f(xij, hij), whose
volume is approximately equal to the volume between the surface and the xy-plane x = xi – 1,

x = xi ; y = yi – 1 y = yi. Then ( )
1
1

,
n

ij ij i j
i
j

f x y
=
=

ξ η ∆ ⋅ ∆∑
 
gives an approximate

 
value for volume V of

the prism of the cylinder enclosed between z = f(x, y) and the xy-plane.
The volume V is the limit of the sum of each elementary volume z δxδy.

∴                     ( )
0
0

,
x R Ry

V Lt z x y z dx dy f x y dA
δ →
δ →

= δ δ = =∑ ∑ ∫ ∫ ∫ ∫

Note: In cyllidrical co-ordinates, the equation of the surface becomes z = f(r, θ), elementary area dA = r dr dθ

and volume ( )= θ θ∫ ∫ ,
R

f r r dr d

X

O Y

Z

CS

R

δ δR, y 

δx
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Problems on Volume of a Solid with the Help of Double Integral

Example 40: Find the volume of the tetrahedron bounded by the plane + + =yx z

a b c
1  and

the co-ordinate planes.     [Burdwan, 2003]

Solution: Given, ( )1 , 1
y yx z xz f x y c

a b c a b
 + + = ⇒ = = − −   …(1)

If f(x, y) is a continuous and single valued function over the region R (see Fig. 5. 50) in the
xy plane, then z = f(x, y) is the equation of the surface. Let C be the closed curve that is the
boundary of R. Using R as a base, construct a cylinder having elements parallel to the z-axis.
This cylinder intersects z = f(x, y) in a curve Γ , whose projection on the xy-plane is C.

  

( , 0, 0)a

P Q

b

c

a

(0, , 0)b

X

Z

(0, 0, )c

Y

R

                        

R
C

Y

Z C x a y b f x y = (1– /  – / ) = ( , )

The equation of the surface under which the region whose volume is required, may be

written in the form (1) i.e., 1 .
yxz c

a b
 = − −  

Hence the volume of the region 1
R R

yxadA c dx dy
a b

 = = − −  ∫ ∫ ∫ ∫
The equation of the inter-section of the given surface with xy-plane is

                  1
yx

a b
+ = …(2)

If the prisms are summed first in the y-direction they will be summed from y = 0 to the line

1 xy b
a

 = −  

Therefore,           
1

0 0
1

xa b
a yxV c dy dx

a b

 −    = − −  ∫ ∫

                                

( )1 /2

0
0

2

b x a
a xy y

c y dx
a b

−
 = − −  ∫
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2

20

1
2 2

a x xc b dx
a a

 = − +  ∫

                                
2 3

2
02 2 6

a
x x xcb

a a
 = − +  

                                
 = − + =  

2 3

2
.

2 2 66

a a a abc
bc

a a

Example 41: Prove that the volume enclosed between the cylinders x2 + y2 = 2ax and

z2 = 2ax is .a2128

15

Solution: Let V be required volume which is enclosed by the cylinder x2 + y2 = 2ax and the
paraboloid z2 = 2ax.

Only half of the volume is shown in Fig 5.52.

Now, it is evident from that 2z ax=  is to be evaluated
over the circle x2 + y2 = 2ax(with centre at (a, 0) and radius
a.

Here y varies from 2 22   to  2ax x ax x− − −  on the
circle x2 + y2 = 2ax and finally x varies from x = 0 to x = 2a

∴          [ ]
2

2

2 2

0 2
2

a ax x

ax x
V z dx dy

−

− −
= ∫ ∫  as z = f(x, y)

                                 
22 2

0 0
2 2 2

a ax x
ax dy dx

− 
= ⋅  ∫ ∫

                                
22 2

0 0
4 2

a ax x
ax dy dx

− 
=   ∫ ∫

                                 
2 22 2 2

00 0
4 2 4 2 2

aa ax x
ax y dx ax ax x dx

−= = −∫ ∫
                                

2

0
4 2 2

a
a x a x dx= −∫

Let x = 2a sin2θ, so that dx = 4a sinθ cosθ dθ. Further, for x = 0, θ = 0

       
π= θ = .2 ,
2

x a

∴          2 2

0
4 2 2 sin 2 cos 4 sin cosV a a a a d

π
= θ θ ⋅ θ θ θ∫

                                
23 3 2

0
64 sin cosa d

π
= θ θ θ∫

(2 , 0)a

( , 0)a
(0, 0)

Z ax2 = 2

X

Z

x y ax +  = 222







42

Fig. 4.52



                                
( )( ) ( )( )

( )( )
3

1 3 1 3
64 1, 3, 2

2

p p q q
a p q

p q p q

− − … − − …
= ⋅ = =

+ + − …

                               
( ) 3

3 3 1 1 128 .64
5 3 15

a
a

−
= =

⋅

Problems based on Volume as a Double Integral in Cylindrical Coordinates

Example 42: Find the volume bounded by the cylinder x2 + y2 = 4 and the hyperboloid
x2 + y2 – z2 = 1 .

Solution: In cartesian co-ordinates, the section of the given hyperboloid x2 + y2 – z2 = 1 in
the xy plane (z = 0) is the circle x2 + y2 = 1, where as at the top and at the bottom end (along
the z-axis i.e., 3z = ± ) it shares common boundary with the circle x2 + y2 = 4 (Fig. 5.53 and
5.54).

Here we need to calculate the volume bounded by the two bodies (i.e., the volume of
shaded portion of the geometry).

X

Y

Z

O
                

             

P

O

Q
x y +  = 422

(  = 1)r

(  = 2)r

x y +  = 122

(Best example of this geometry is a solid damroo in a concentric long hollow drum.)
In cylindrical polar coordinates, we see that here r varies from r = 1 to r = 2 and θ varies

from 0 to 2π.

∴ ( )2 2 ,V zdxdy f r r dr d   = = θ θ      ∫∫ ∫∫

                                
2 2

2

0 1
2 1r rdr d

π = − θ  ∫ ∫ (³   x2 + y2 – z2 – 1 ⇒ 2 2 1z x y= + − )

                                ( )
32 2

2 2
0 1

12 1
3

d r d
π  

= − θ  ∫ ∫
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( )

23
22 2

0

1

1
2

3

r
d

π −
= θ∫

                                
π

= θ = π∫
2

0

.2 3 4 3d

Example 43: Find the volume bounded by the cylinder x2 + y2 = 4 and the planes y + z
= 4 and z = 0.                                      [KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007]

Solution: From Fig. 5.55, it is very clear that z = 4 – y is to be integrated over the circle x2 +
y2 = 4 in the xy-plane.

To cover the shaded portion, x varies from 2 24   to  4y y− − −  and y varies from – 2 to 2.
Hence the desired volume,

                             
2

2

2 4

2 4

y

y
V z dxdy

−

− − −
= ∫ ∫

   ( )
22 4

2 0
2 4

y
y dxdy

−

−
= −∫ ∫

                                ( )
242

2 0
2 4

y
y dx dy

−

−

 
= −   ∫ ∫

                                ( )
2

2

2
2 4 4y y dy

−
= − −∫

                                
2

2 2

2
2 4 4 4y y y dy

−
 = − − − ∫

                                
2

2

2
8 4 0y dy

−
= − −∫

(The second term vanishes as the integrand is an odd function)

                                
−

−

 −
= + = π 

  

2
2

1

2

4 4
8 sin 16 .

2 2 2

y y y

ASSIGNMENT 7

1. Find the volume enclosed by the coordinate planes and the portion of the plane
lx + my + nz = 1 lying in the first quadrant.

2. Obtain the volume bounded by the surface 1 1
yxz c

a b
  = − −        and the quadrant of

the elliptic cylinder 
22

2 2
1

yx
a b

+ =

[Hint: Use elliptic polar coordinates x = a rcosθ, y = brsinθ ]

X

O

Z

Y

44
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Divide the given solid by planes parallel to the coordinate plane into rectangular
parallelopiped of elementary volume δxδyδz.

Then the total volume V is the limit of the sum of all elementary volume i.e.,

                            0
0
0

x
y
z

V Lt x y z dx dy dx
δ →
δ →
δ →

= δ δ δ =∑ ∑ ∑ ∫∫∫

Problems based on Volume as a Triple Integral in cartesian Coordinate System

Example 44: Find the volume common to the cylinders x2 + y2 = a2 and x2 + z2 = a2.

Solution: The sections of the cylinders x2 + y2 = a2 and x2 + z2 = a2 are the circles x2 + y2 = a2

and x2 + z2 = a2 in xy and xz plane respectively.
Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is

shown.

Clearly, in the common region, z varies from 0 to 2 2a x−  i.e., 2 2 21 0a x y− − , and x and

y vary on the circle x2 + y2 = a2.
The required volume

∴       
2 2 2 2 2

2 2

1 1

0

0 0 0
8

y a x z a x ya

y z
V dz dy dx

= − = − −

= =
= ∫ ∫ ∫

                   ( )− −= ∫ ∫
2 2

2 2

00 0
8

a a x a xz dy dx

                   
2 2

2 2

0 0
8

a xa
a x dy dx

− 
= −  ∫ ∫

                   ( )
2 2

2 2

0 0
8

a xa
a x dy dx

− 
= −   ∫ ∫

                   ( )2 2 2 2

0
8 0

a
a x a x dx= − − −∫

( ) 3
2 2 2

0
0

8 8
3

a
a xa x dx a x

  = − = −     
∫

                   
 = − =  

3 3
3 16

8 .
3 3
a a

a

( , 0, 0)a x a = A

O
P Q

C

X

Y

Z

O´́ a
D

x O = 
O´

a

B
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Example 45: Find the volume bounded by the xy plane, the cylinder x2 + y2 = 1 and the
plane x + y + z = 3.

Solution: Let V(x, y, z) be the desired volume enclosed laterally by the cylinder x2 +  y2 = 1
(in the xy-plane) and on the top, by the plane x + y + z = 3 (= a say).

Clearly, the limits of z are from 0 (on the
xy-plane) to z = (3 – x – y) and x and y vary on the
circle x2 + y2 = 1

∴         ( )
2

2

1 31

1 1 0
, ,

x x y

x
V x y z dzdy dx

− − −

− − −
= ∫ ∫ ∫

                                ( )( )− − −

− −
= ∫ ∫

2

2

1 1 3
01 1 1

x x y

x
z dy dx

                                ( )
2

2

11

1 1
3

x

x
x y dy dx

−

− − −

 
= − −  ∫ ∫

                               

2

2

121

1 1

3
2

x

x

y
y xy dx

−

− − −

 = − −  ∫

⇒  ( )1
2 2

1
6 1 2 1I x x x dx

−
= × − − −∫

On taking x = sinθ, we get dx = dθ; For 1,
2

For 1,
2

x

x

π = − θ = − 
π= θ = 


Thus,

                            ( )/2
2 2

/2
6 1 sin 2sin 1 sin cosV d

π

−π
= − θ − θ − θ θ θ∫

                                ( )/2
2 2

/2
6cos 2sin cos d

π

−π
= θ − θ θ θ∫

                                
/2 /2

2 2

0 /2
6 2 cos 2 sin cosd d

π π

−π
= × θ θ − θ θ θ∫ ∫

  Ist         IInd

                                

/23

/2

(2 1) cos 212 2 3 0 3
2 2 3 3

π

− π

− π θ= ⋅ + = π + × = π

Using    
( )( )

( )
/2

0

1 3
cos , only if is even

2 2
p p p

d p
p p

π − − … π θ θ = ×  − …∫  and

x y +  = 122

x = 0

x
y +  = 3

QP
O

X

Y

Z

46
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       ( ) ( ) ( )1

´
1

n
n f x

f x f x dx
n

+
=

+∫  for Ist and IInd integral respectively

Example 46: Find the volume bounded by the ellipsoid + + = .
yx z

a b c

22 2

2 2 2
1

Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid
into the positive octant.

The ellipsoid cuts the XOY plane in the ellipse
22

2 2
1

yx
a b

+ =  and z = 0.

Therefore, the required volume lies between the
ellipsoid

                             
22

2 2
1

yxz c
a b

= − −

and the plane XOY (i.e., z = 0) and is bounded on the
sides by the planes x = 0 and y = 0

Hence,             
22 2

2 2 2
1 1

0 0 0
8

yx xa b c
a a bV dzdy dx

− − −
= ∫ ∫ ∫

                                

2

2
21 2

2 20 0
8 1

xa b
a yxc dy dx

a b

−
= − −∫ ∫

                        2 2

0 0
8

a c y dy dx
b

α = α −  ∫ ∫
2

2
taking 1 x

a b

   α− =    

                            

2 2 2
1

0
0

8 sin
2 2

a y y ycV dx
b

α

−
 α − α= + 

α  
∫

2
2 2 2 2 1Using formula  tan

2 2
x a xa x dx a x

a
− − = − +  ∫

                      
2

1

0
8 0 sin 1

2

ac dx
b

− α = +  ∫

                                
2 2

2 2
2 20 0

4 2 1 1
2

,
a ac c x xdx b dx b

b b a b
π π  = α = − α = −  ∫ ∫

            
3

2
0

12
3

a
xbc x

a
 = π −  

   = π4
.

3
abc

A

B

C

Z

X

Y
O
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Example 47: Evaluate the integral 
− − −∫ ∫ ∫ dxdydz

a x y z2 2 2 2
 taken throughout the volume

2 + y2 + z2 = a2, any of the three variables x, y, z can be

expressed in term of the other two, say 2 2 2 .z a x y= ± − −
In the xy-plane, the projection of the sphere is the circle x2 + y2 = a2.

Thus,  
2 2 2 2 2

2 2 2 20 0 0
8

a a x a x y dx dy dz
I

a x y z

− − −
=

− − −∫ ∫ ∫

                                
2 2 2 2 2

2 20 0 0
8

a a x a x y dz dy dx
z

− − −  
=   α −  ∫ ∫ ∫ , α2 = (a2 – x2 – y2)

                                
2 2

0

1

0 0
8 sin

a a x z dy dx
α−

−
  =     α  ∫ ∫

                                ( )
2 2

1 1

0 0
8 sin 1 sin 0

a a x
dy dx

−
− −

 
= −  ∫ ∫

                                
2 2

2 2

00 0 0
8 4

2

a a x a a x
dy dx y dx

− − π  = = π    ∫ ∫ ∫

                                 
2 2 2

2 2 1

0
0

4 4 sin
2 2

a
a x a x a xa x dx

a
− −= π − = π + 

 ∫

                                
2

4 0
2 2
a π = π +  

 I = π2a2.

Example 48: Evaluate ( )+ +∫ ∫ ∫ x y z dx dy dz  over the tetrahedron bounded by the planes
x = 0, y = 0, z = 0 and x + y + z = 1.

Solution: The integration is over the region R(shaded portion) bounded by the plane x = 0,
y = 0, z = 0 and the plane x + y + z = 1.

The area OAB, in xy plane is bounded by the lines x + y = 1, x = 0, y = 0
Hence for any pt. (x, y) within this triangle, z goes from xy plane to plane ABC (viz. the

surface of the tetrahedron) or in other words, z changes from z = 0 to z = 1 – x – y. Likewise
in plane xy, y as a function x varies from y = 0 to y = 1 – x and finally x varies from 0 to 1.

whence,                 ( )
( )over R

I x y z dx dy dz= + +∫ ∫ ∫

                                ( )
1 11

0 0 0

x x y
x y z dz dy dx

− − −  = + +    ∫ ∫ ∫

Z a x y= − −2 2 2

Circle  +  = x y a 22 2
A

B

C

Z

YO

X

48

of the sphere.                                                                                                

Solution: Here for the given sphere x

Fig. 4.60



                                ( )
11 2

0 0 02

x ya x zx y z dy dx
− −−  = + +  ∫ ∫

                                ( )( ) ( )2
1

0 0

1
1

2

a x x y
x y x y dy dx

−  − −
 = + − − +
  

∫ ∫
                                ( )( )

1 1

0 0

1 1 1
2

x
x y x y dy dx

−
= − − + +∫ ∫

                                ( )
1 1 2

0 0

1 1
2

x
x y dy dx

−  = − + ∫ ∫

                                
( )

13
1

0
0

1
2 3

x
x y

y dx

−
 +
 = −
  

∫ ,

                                ( )
1 3

0

1 11
2 3 3

xx dx
  = − − −    ∫

                                
12 4

0

1 2
2 3 2 12

x xx = − +  

   
1 2 1 1 1
2 3 2 12 8

 = − + =  

ASSIGNMENT 8

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane

1,
yx z

a b c
+ + =  

2. Find the volume bounded by the paraboloid x2 + y2 = az, the cylinder x2 + y2 = 2ay and
the plane z = 0.

5.12. VOLUMES OF SOLIDS OF REVOLUTION AS A DOUBLE INTEGRAL

Let P(x, y) be any point in a region R enclosing an elementary
area dx dy around it. This elementary area on revolution
about x-axis form a ring of volume,
                           δV = π[(y + δy)2 – y2] δx = 2πyδxδy    …(1)

Hence the total volume of the solid formed by revolution
of this region R about x-axis is,

                            2
R

V y dx dy= π∫ ∫  …(2)

Similarly, if the same region is revolved about y-axis,
then the required volume becomes

                            2
R

V x dx dy= π∫ ∫ …(3)

X

A

B

Z

Q

(0, 1, 0)

(1, 0, 0)

C (0, 0, 1)

Y

(1, 0, 0)

O
P

X

Y

y

R
δx

δy

P x y ( , )

O
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by using triple integration                                                   

Fig. 4.62



Expressions for above volume in polar coordinates about the initial line and about the

pole are 
22 sin

R
r dr dπ θ θ∫ ∫  and 22 cos

R
r dr dπ θ θ∫ ∫  respectively.

Example 49: Find by double integration, the volume of the solid generated by revolving

the ellipse yx

a b
+ =

22

2 2
1  about y-axis.

Solution: As the ellipse 
22

2 2
1

yx
a b

+ =  is symmetrical about the

y-axis, the volume generated by the left and the right halves
overlap.

Hence we shall consider the revolution of the right-half ABD

for which x-varies from 0 to 
2

2
1

y
a

b
−  and y-varies from – b to  b.

∴                    
2 2

0
2

a b yb
b

b
V x dx dy

−

−
= π∫ ∫

                                ( )
2 2

2 2
2 2

2
0

2
2

a b yb bb

b b

x ady b y dy
b

−

− −

  π= π = −  ∫ ∫

                                   ( )
32 2

2 2 2
2 20

0

22
3

b
b ya ab y dy b y

b b
 π= π − = −  ∫

                                = π 24
.

3
a b

Example 50: The area bounded by the parabola y2 = 4x and the straight lines x = 1 and y
= 0, in the first quadrant is revolved about the line y = 2. Find by double integration the
volume of the solid generated.

Solution: Draw the standard parabola y2 = 4x to which
the straight line y = 2 meets in the point P(1, 2), Fig. 5.64.

Now the dotted portion i.e., the area enclosed by
parabola, the line x = 1 and y = 0 is revolved about the line
y = 2.
∴ The required volume,

                       ( )
21

0 0
2 2

x
V y dx dy= π −∫ ∫

                           ( )
221 1

0 00

2 2 2 4 2
2

x
y

y dx x x dx
 = π − = π −  ∫ ∫

                           
3

2

1
2

0

8 102
3 3

x x π = π − =  

A

B

C

D

Q P 

Y

X

Y´

X´

2 – y

O
y = 0

x = 1

P (1, 2)

y x2 = 4
y = 2

50
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Example 51: Calculate by double integration, the volume generated by the revolution of
the cardiod r = a(1 – cosθθθθ

Soluton: On considering the upper half of the cardiod, because due to symmetry the lower
half generates the same volume.

∴          
(1 cos )

2

0 0
2 sin

a
V r dr d

− θπ
= π θ θ∫ ∫

                                
( )1 cos3

0 0

2 sin
3

a
r d

− θπ
= π θ θ∫

                                ( )
3 3

0

2 1 cos sin
3
a d

ππ= − θ θ θ∫
                                

( )
π

− θπ π= =
4

3 3

0

1 cos2 8 .
3 4 3

a a

Example 52: By using double integral, show that volume generated by revolution of

cardiod r = a(1 + cosθθθθθ) about the initial line is aπ 38
3 .

Solution: The required volume

                            
(1 cos )

2

0 0
2 sin

a
r dr d

+ θπ
= π θ θ∫ ∫

                            
( )1 cos3

0 0

2 sin
3

a
r d

+ θπ  = π θ θ  ∫
                            ( )33

0
2 1 cos sina d

π
= π + θ θ θ∫

                            
( )43

0

1 cos2
3 4
a

π
 + θπ= − 
  

                            
3 4 32 2 8 .0

3 4 3
a aπ   π= − − =  

ASSIGNMENT 9

1. Find by double integration the volume of the solid generated by revolving the ellipse
22

2 2
1

yx
a b

+ =  about the X-axis.

2. Find the volume generated by revolving a quadrant of the circle x2 + y2 = a2, about its
diameter.

3. Find the volume generated by the revolution of the curve y2(2a – x) = x3, about its
asymptote through four right angles.

4. Find the volume of the solid obtained by the revolution of the leminiscate r2 = a2

θ π = θ = 0
X

θ π = /2

Y

θ

θ π = θ = 0
X

θ π = /2

Y

θ
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) about its axis.                                                                               

Fig. 4.65

Fig. 4.66

cos2θ
about the initial line.                                                                                              



For transforming elementary area or the volume from one sets of coordinate to another, the
necessary role of ‘Jacobian’ or ‘functional determinant’ comes into picture.

(a) Triple Integral Under General Transformation

Here 
( , , ) '( , , )

( , , )
( , , ) ( , , )| | ; where ( 0)

( , , )R x y z R u v w

x y z
f x y z dx dy dz F u v w J du dvdw J

u v w
∂= = ≠
∂∫∫∫ ∫∫∫  …(1)

Since in the case of three variables u(x, y, z), v(x, y, z), w(x, y, z) be continuous together
with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is
defined by

u v w
x x x

u v w
y y y

u v w
z z z

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂

(b) Triple Integral in Cylindrical Coordinates

Here      ( ) ( )= θ θ∫ ∫ ∫ ∫ ∫ ∫
´

, , , ,
R R

f x y z dx dy dz F r z J dr d dz , where  |J| = r

The position of a point P in space in cylindrical coordinates is determined by the
three numbers r, θ, z where r and θ are polar co-ordinates of the projection of the point
P on the xy-plane and z is the z coordinate of P i.e., distance of the point (P) from the
xy-plane with the plus sign if the point (P) lies above the xy-plane, and minus sign if
below the xy-plane (Fig. 5.67).

O

y
X

Z

z

r

Q

P x y z( , , )

θ

Y                  O

X

Y

Z

∆z
∆θ

N

θ
Q R

M

P

∆r
r ∆θ

∆θ

In this case, divide the given three dimensional region R' (r, θ, z) into elementary
volumes by coordinate surfaces r = ri, θ = θj, z = zk (viz. half plane adjoining z-axis,
circular cylinder axis coincides with Z-zxis, planes perpenducular to z-axis). The

52

4.13. CHANGE OF VARIABLE IN TRIPLE INTEGRAL

Fig. 4.67 Fig. 4.68



curvilinear ‘prism’ shown in Fig. 5. 68 is a volume element of which elementary base
area is r ∆r∆θ and height ∆z, so that ∆v = r ∆r ∆θ ∆z.

Here θ is the angle between OQ and the positive x-axis, r is the distance OQ and z is
the distance QP. From the Fig. 5.62, it is evident that

                             x = r cosθ, y = r sinθ, z = z and so that,

                

cos sin 0, ,
sin cos 0

, , 0 0 1

x y z
J r r r

u v w

θ θ  = − θ θ =   …(2)

Hence, the triple integral of the function F(r, θ, z) over R´ becomes

                  ( )
( )´ , ,

, ,
R r z

V F r z r dr d dz
θ

= θ θ∫ ∫ ∫ …(3)

(c) Triple Integral in Spherical Polar Coordinates

Here           ( ) ( ), , , ,
R R

V f x y z dxdydz F r J drd d= = θ φ θ φ∫ ∫ ∫ ∫ ∫ ∫ , where |J| = r2sinθ

The position of a point P in space in spherical coordinates is determined by the
three variables r, θ, φ where r is the distance of the point (P) from the origin and so
called radius vector, θ is the angle between the radius vector on the xy-plane and the
x-axis to count from this axis in a positive sense viz. counter-clockwise.
For any point in space in spherical coordinates, we have
                    0 ≤ r ≤ ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

Divide the region ‘R’ into elementary volumes ∆V by coordinate surfaces, r = constant
(sphere), θ = constant (conic surfaces with vertices at the origin), φ = constant (half
planes passing through the Z-axis ).

To within infinitesimal of higher order, the volume element ∆v may be considered
a parallelopiped with edges of length ∆r, r ∆θ, r sinθ ∆φ. Then the volume element
becomes ∆V = r2sinθ ∆r ∆θ ∆φ.

x

O

θ

φ
90°

A
Ly

X

Y

Z

z

θ

P x y z( , ,. )

r

90°

         

r sin
∆φ

r
P

θ

S

R

Q
r∆θ

Q´

R´

S´

P´

∆r

x

y L

O

X

∆φφ

Z

Y

z

∆θ
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For calculation purpose, it is evident from the Fig. 5.69 that in triangles, OAL and
OPL,

                             x = OL cosφ = OP cos(90 – θ) . cosφ = r sinθ cosφ,

                             y = OL sinφ = OP sinθ . sinφ = r sinθ sinφ,

                              z = r cosθ.

Thus,           
( )
( )

2
sin cos sin sin cos, ,
cos cos cos sin sin sin

, , sin sin sin cos 0

x y z
J r r r r

r r r

θ φ θ φ θ∂
= = θ φ θ φ − θ = θ

∂ θ φ − θ φ θ φ

Problems Volume as a Triple Integral in Cylindrical Co-ordinates

Example 53: Find the volume intercepted between the paraboloid x2 + y2 = 2az and the
cylinder x2 + y2 – 2ax = 0.

Solution: Let V be required volume of the cylinder
x2 + y2 – 2ax = 0 intercepted by the paraboloid x2 + y2 = 2az.

Transforming the given system of equations to polar-
cylindrical co-ordinates.

Let 

cos
( , , ) ( , , )sin  sothat  

x r
V x y z V r zy r

z z

= θ = θ= θ
= 

By above substitution the equation of the paraboloid becomes

r2 = 2az  ⇒  
2

2
rz
a

= and the cylinder x2 + y2 = 2ax gives

r2 – 2ar cosθ = 0  ⇒  r(r – 2a cosθ) = 0 with r = 0 and
r = 2a cosθ.

Thus, it is clear from the Fig. 5.71 that z varies from 0 to 
2

2
r
a

 and r as a function of θ varies

from 0 to 2a cosθ with θ as limits 0 to 2π. Geometry clearly shows the volume covered under

the +ve octant only, i.e. 1 th
4

 of the full volume.

              
22 cos /2/2

( , , ) ( , , ) 0 0 0
' 4 , as| |

r a z r a

x y z r z r z
V V r dzdrd J r

= θ =θ=π

θ = =
= = θ =∫ ∫ ∫

                                [ ]
2/22 cos/2

0 0 0
4

r aa
r z rdr d

θπ  
= θ  ∫ ∫

                                
/2 2 cos 3

0 0
4

2

a r dr d
a

π θ = θ  ∫ ∫

                                

2 cos/2 4

0 0

14
2 4

a
r d

a

θπ
= θ∫

x y az2 +  = 22

Paraboloid

x y ax2 +  – 2  = 02

cylinder

( , 0)a O
θ

r

X

Y

Z
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/2 4 4

4

0

1 24 cos
2 4

a d
a

π
= θ θ∫

   
( )( )3 3 4 1 4 3

2
4 2 2

a
− − π=

×

                                
33

2
aπ= .

Example 54: Find the volume of the region bounded by the paraboloid az = x2 + y2 and
the cylinder x2 + y2 = b2. Also find the integral in case when a = 2 and b = 2.

Solution: On using the cylindrical polar co-ordinates (r, θ, z) with x = r cosθ, y = r sinθ, so

that the equations of the cylinder and that of the paraboloid are r = b and 
2rz
a

=  respectively.

See Fig. 5.72, only one-fourth of the common volume is shown.

Hence in the common region, z varies from z = 0 to 
2rz
a

=  and r and θ varies on the circle

from 0 to b and 0 to 2
π

 respectively.

∴ The desired volume

                             
2//2

0 0 0
4

b r a
V rdrd dz

π
= θ∫ ∫ ∫

                                
2//2

0 0 0
4

b r a
rdr dz d

π   
= θ    ∫ ∫ ∫

                                
/2 2

0 0
4

b rr dr d
a

π   = θ    ∫ ∫

                                
/2 4

0 0

4
4

b
r d

a

π  
= θ 

 ∫

                                
/24 2

0

4
4 2
b b

a a

π π= × θ =

As a particular case, when a = 2, b = 2, then

                            
( )42

4
2 2

V
π

= = π
×

Problmes on Volume in Polar Spherical Co-ordinates

Example 55: Find the volume common to the sphere x2 + y2 + z2 = a2 and the cone x2 + y2 = z2

OR
Find the volume cut by the cone x2 + y2 = z2 from the sphere x2 + y2 + z2 = a2
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Fig. 4.72

.



Solution: For the given sphere, x2 + y2 + z2 = a2 and the cone x2 + y2 = z2, the centre of the
sphere is  (0, 0, 0) and the vertex of the cone is origin. Therefore, the volume common to the

two bodies is symmetrical about the plane z = 0, i.e. the required volume, 2V dxdydz= ∫ ∫ ∫

In spherical co-ordinates, we have 2
sin cos
sin sin ; sin
cos

x r
y r J r
z r

= θ φ= θ φ = θ
= θ 

Thus, x2 + y2 + z2 = a2  becomes  r2 = a2 i.e., r = a
and               x2 + y2 = z2  becomes  r2 sin2θ (cos2φ + sin2φ) = r2cos2θ
i.e.,                  sin2θ = cos2θ  i.e. θ = π/4.

Clearly, the volume shown in the figure (Fig. 5.73) is
one-fourth, i.e. in first quadrant only and, in the common
region,

                              

 varies from 0 to ,

 varies from 0 to ,
4

 varies from 0 to 
2

r a 
π θ 


π φ 


Hence the required volume,

                            
/4/2

2

0 0 0
2 4 sin

a
V r dr d d

ππ = θ θ φ  ∫ ∫ ∫
                                

/4/2
2

0 0 0
8 sin

a
r dr d d

ππ  = θ θ φ  ∫ ∫ ∫
                                

/2 /4 3

0 0 0

8 sin
3

a
r d d

π π  = θ θ φ  ∫ ∫
                                [ ]

/2 /43
00

8 cos
3

a d
π π= − θ φ∫

                                
/2

3

0

8 11
3 2

a d
π = − φ   ∫

    
34 11

3 2
a  π= −  

Alternately: In polar-cylindrical co-ordinates, intersection of the two curves x2 + y2 + z2 = a2

and x2 + y2 = z2 results in z2 + z2 = a2 or
2

2

2
az = .

Further, 
2 2

2 2 2 2 2

2 2
a ax y a z a+ = − = − =  ⇒ 

2
ar = , i.e. r varies from 0 to 

2
a

Hence,             ( )/ 22
2 2

0 0
2

a
V a r r r dr d

π
= − − θ∫ ∫

φ
O Y

X

Z

90°

x y z +  = 2 2 2

x y z +  = 2 2 2

P

Q

X

Z

Y
θ
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|³ P lies on the cone whereas Q lies on the sphere as a function of (r, θ)

   ( ) 2/ 2
2 2 2

0 0
2

a
r a r r d dr

π = − − θ  ∫ ∫

           ( ) 3 23/22 2

0

14
3 3

a

ra r = π − − −  
 ( ) ( ) ( )

1 1 3
2 2 2 2 2 22 2 2

1 1since 3
3 3

r a r r a r d a r
  − −− = − − = −    

                                
3 3 31 14

3 2 2 3 2 2 3
a a a = π − − +  

                                
34 11

3 2
a  π= −  

Example 56: By changing to shperical polar co-ordinate system, prove that

V
∫ ∫ ∫ πyx z dx dy dz abc

a b c

22 2

2 2 2
1 – – – =

4  where ( ) 
 
 

≤
yx zV x,y,z

a b c

22 2

2 2 2
= : + + 1

Solution: Taking ,

,

x u
a
y

v
b
z w
c

= 
= 

=


, so that 
22 2

2 2 2
1

yx z
a b c

+ + ≤ ⇒ u2 + v2 + w2 ≤ 1

Now transformation co-efficient, x x x
u v w
y y y

J
u v w
z z z
u v w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂=
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

0 0
0 0
0 0

a
b abc

c
= =

∴                          V 
( )

22 2

2 2 2
, ,

1
V x y z

yx z dx dy dz
a b c

= − − −∫ ∫∫

                                ( )
( )2 2 2

´ , ,
1

V u v w
u v w abc du dv dw= − − −∫ ∫ ∫

To transform to polar spherical co-rodinate system, let
 

sin cos ,
sin sin ,
cos

u r
v r
w r

= θ φ = θ φ 
= θ 

Then       V(́u, v, w) = {(u, v, w): u2 + v2 + w2 ≤ 1, u ≥ 0, v ≥ 0, w ≥ 0} reduces to

                     V”(r, θ, φ) = {r2 ≤ 1 i.e., 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π}

∴    ( )
2 2 2

´ , ,
1

V u v w
u v w abc dudvdw= − − −∫ ∫ ∫
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( )

2

, ,
1

V r
abc r J dr d d

θ φ
= − θ φ∫ ∫ ∫

"

where |J| = r2sinθ

⇒                ( )
12

2 2
, , 0 0 0

” 1 sinrV abc r r dr d d
πφ= π

θ φ φ=

  = − θ θ φ    ∫ ∫ ∫
Now put r = sin t so that dr = cost dt  and for

 

0, 0,

1,
2

r t

r t

= = π = = 

∴     ( )
22

2

0 0 0

/

r, ,V" abc cost sin t cos t dt sin d d
  =     ∫ ∫ ∫

π ππ

θ φ θ θ φ

                                
( ) ( )
( )( )

2

0 0

2 1 2 1
sin

2 2 4 2 2
abc d d

π π  − ⋅ − π= θ θ φ  + −  ∫ ∫

                        
2

0 0

1 1 sin
4 2 2

abc d d
π π π = θ θ φ   ∫ ∫

                                [ ]
π ππ= − θ φ∫

2

00
cos

16
abc d

                                
2 2 2

0 0
2

16 8 4
.abc abc abcd d

π ππ π π= φ = φ =∫ ∫
Example 57: By change of variable in polar co-ordinate, prove that

           .π∫ ∫ ∫
x x y dz dy dx

x y z

2 2 21 1– 1– – 2

2 2 20 0 0
=

81 – – –

OR
Evaluate the integral being extended to octant of the sphere x2 + y2 + z2 = 1.

OR
Evaluate above integral by changing to polar spherical co-ordinate system.

Solution: Simple Evaluation:

                             
2 2 21 1 1

2 2 20 0 0 1

x x y dzI dx dy
x y z

− − −
=

− − −∫ ∫ ∫
Treating ( ) 2 22 2 2

1 1as  
1 a zx y z −− − −

                             

2 22 11 1
1

0 0 0
sin

x yx zI dx dy
a

− −−
−

 
=  

 ∫ ∫

58



                                

2 2
2

1
1 1

1
2 20 0

0

sin
1

x y
x zdx dy

x y

− −
−

−
 
 =
 − − 

∫ ∫ ,  as  2 21a x y= − −

                                
21 1

0 0
0

2

x
dx dy

− π = − ∫ ∫
                                ( )

21 1

002
x

y dx
−π  =  ∫

                                
1

2

0
1

2
x dxπ= −∫

                                

1
2

1

0

1 1 sin ,
2 2 2

x x x− π −= + 
 

2 2 2
2 2 1using sin

2 2
x a x a xa x dx

a
−−− = +∫

                                
210

2 2 2 8
π π π = + =  

By change of variable to polar spherical co-ordinates, the region of  integration

                            V =  {(x, y, z); x2 + y2 + z2 ≤ 1; x ≥ 0, z ≥ 0, y ≥ 0.}

becomes                I =  (r, θ, φ); r2 ≤ 1, i.e. 0 ≤ r ≤ 1, 0 ≤ }, 0
2 2
π πθ ≤ ≤ φ ≤

where                   

sin cos ,
sin sin ,
cos

x r
y r
z r

= θ φ = θ φ 
= θ 

Now                  
( )
( )

, ,
, ,

x y z
J

r
∂

=
∂ θ φ  = coefficient of transformation = r2sinθ.

whence             

2/2 /2 1

2 2 2 20 0 0

sin
1 1

V

dx dy dz r
dr d d

x y z r

π π θ
= θ φ

− − − −∫∫ ∫ ∫ ∫ ∫

                             
/2 /2 1 2

20 0 0
sin

1
rI d dr d

r

π π   = φ θ θ   − ∫ ∫ ∫
Let r = sin t so that dr = cos t dt. Further, when 0, 0,

1,
2

r t

r t

= = π = = 

∴                     
π π π

= φ θ θ ⋅∫ ∫ ∫
/2 /2 /2 2

0 0 0

sinsin cos
cos

tI d d t dt
t

    
/2 /2

0 0

1sin ;
2 2

d d
π π π = φ θ θ ⋅  ∫ ∫
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/2 /2

0 0
sin

4
d d

π ππ= φ θ θ∫ ∫
                                ( )

/2/2

0 0

cos
4

d
πππ= φ − θ∫

                                
/2 2

0
.

4 8

ππ π= φ =

Example 58: Find the volume of the ellipsoid yx z
a b c

22 2

2 2 2
+ + = 1  by changing to polar co-

Take                , ,
yx zX Y Z

a b c
= = =   so that 

( )
( )

, ,

, ,

x y z
J abc

X Y Z

∂
= =

∂

∴ The required volume,

                            V dx dy dz J dX dY dZ= =∫ ∫ ∫ ∫ ∫ ∫

                                abc dX dYdZ= ∫ ∫ ∫ , taken throughout the sphere X2 + Y2 + Z2 = 1.

Change this new system (X, Y, Z) to spherical polar co-ordinates (r, θ, φ) by taking

          

sin cos ,
sin sin ,
cos

X r
Y r
Z r

= θ φ = θ φ 
= θ 

 so that 
( )
( )

2, ,
´ sin ,

, ,
X Y Z

J r
r

∂
= = θ

∂ θ φ

                            2 sinV abc J dr d d abc r dr d d= θ φ = θ θ φ∫ ∫ ∫ ∫ ∫ ∫
taken throughout the sphere r2 ≤ 1, i.e. 0 ≤ r ≤ 1, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

On considering the symmetry,

                             
/2 1/2

2

0 0 0
8 sinV abc r dr d d

ππ   = ⋅ θ θ φ    ∫ ∫ ∫

                                

1/2 /2 3

0 0 0

8 sin
3
rabc d d

π π 
= θ θ φ 

 ∫ ∫

                                [ ]
/2 /2

00

8 cos
3

abc d
π π= − θ φ∫

                                
/2

0

8 1
3

abc d
π

= ⋅ φ∫
                                

/2

0

8 8 4
3 3 2 3

abc abc abc
π π= φ = = π

60

ordinates.                                                                                                             

Solution: We discuss this problem under change of variables.



Miscellaneous Problem

Example 59: Evaluate the surface integral ( )3 2 2 .
S

I x dy dz x y dzdx x zdx dy= + +∫ ∫

where S is the surface bounded by z = 0, z = b, x2 + y2 = a2.
OR

By transformation to a triple Integral, evaluate ( )3 2 2 ,
S

I x dy dz x y dzdx x zdx dy= + +∫ ∫   where

S is the surface bounded by z = 0, z = b, x2 + y2 = a2.

Solution: On making use of Green’s Theorem,

                             ( ) ( )3 3
2 2 2 2

0 0

a b a b

a a
I a y dzdy a y dzdy

− −
= − − − −∫ ∫ ∫ ∫

                                   ( )2 2 2 2 2 2

0

b a aa

a a a
x a x dzdx x a x dzdx

− − −
+ − − − −∫ ∫ ∫ ∫

        ( )
2 2 2 2

2 2 2 2

2 2 0
a y a a ya

a a y a a y
a y b dx dy dx dy

− −

− − − − − −
+ − −∫ ∫ ∫ ∫

Using Divergence Theorem,

                             ( )2 2 23
V

I x x x dx dy dz= + +∫ ∫ ∫

                                
2 2

2

0 0 0
4 5

a x ba
dz dy x dx

−  =     ∫ ∫ ∫

                                
2 2

2

0 0
4 5

a xa
bdy x dx

− 
=  

 ∫ ∫

                                2 2 2

0
20

a
b x a x dx= −∫

                                45
4

a b= π .

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be
carried out by calculating the sum of the integrals evaluated over the projections of the surface S on the co-
ordinate planes. Thus, which upon evaluation is seen to check with the result already obtained. It should be
noted that the angles α, β, γ  are mode by the exterior normals in the +ve direction of the co-ordinate axes.
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ANSWERS

Assignmet 1

1.
2

4
 π 
   2.

4

3
a

3.
1
ab 6. 4

π

Assignment 2

1.
 
 + 

∫ ∫ 2 2
0 0

a x x dy dx
x y 3. ( ) ( )

−⋅ αα

α
+∫ ∫ ∫ ∫

2 2cossin

0 sin 0
, ,

a yya a

a a
f x y dxdy f x y dx dy

2. ( )
−

− −∫ ∫
2 2

2 20
,

a a x

a x
f x y dy dx 4. +∫ ∫ ∫0

( , ) ( , )
y

ma la
m
y ma
l

f x y dx dy f x y dxdy

Assignment 3

1.
24

3
a

2. ( )π −4 43
2

b a 3.
 π +  

2 3 4
4 3

a

Assignment 4

2.
1 sq. units

10

Assignment 5

1.
4

 units
8
aπ

2. ( )
3

2  units
12
a π +

3.
2  units
9
π

4.  units
4
π

Assignment 6

1. 1 2. ( )3 2 28 3 2 2
9

a bc ab ac+ +

3. 8π 4.
8 19log 2
9 9

−

Assignment 7

1.
1

6 lmn 2.
13

4 24
abc π − 
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Assignment 8

1. abc/6 2.
33

2
aπ

Assignment 9

1.
24

3
abπ

2. 22
3

aπ

3. 2π2a3 4. ( )3 1 1log 2 1
4 2 3
a  π + − 
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