36

a \/az——Xz X+
(3 J [ dxdy (4) I I ¢ b laxay
—-a-— aZ XZ

4.8 TRIPLE INTEGRAL (PHYSICAL SIGNIFICANCE)
The triple integral is defined in a manner entirely analogous to the definition of the double
integral.
Let F(x, y, z) be a function of three independent variables X, y, z defined at every point in
a region of space V bounded by the surface S. Divided V into n elementary volumes &V,, 8V,,
., 0V, and let (x,, y,, z,) be any point inside the rth sub division &V,. Then, the limit of the

sum
z

z F(Xr yrlzr)é vV, ..(1) Z=1(% YY) ™

if exists, as n - o« and 8V, - 0 is called the
‘triple integral’ of R(X, y, z) over the region V, and
is denoted by

I”F(x,y,z)dv ..(2)

In order to express triple integral in the
‘integrated’ form, V is considered to be sub-
divided by planes parallel to the three coordinate
planes. The volume V may then be considered as o
the sum of a number of vertical columns extending
from the lower surface say, z = f,(X, y) to the upper
surface say, z = f,(x, y) with base as the elementary
areas 0A, over a region R in the xy-plance when all
the columns in V are taken.

On summing up the elementary cuboids in the
same vertical columns first and then taking the sum
for all the columns in V, it becomes

ZﬁF(XUyﬂL)&ﬁA .3

with the pt. (X, Y,, z,) in the rth cuboid over the element dA,.
When 8A, and 0z tend to zero, we can write (3) as

‘[52 By F(x.y.z dzEdA

Note: An ellipsoid, a rectangular parallelopiped and a tetrahedron are regular three dimensional regions.

4.9. EVALUATION OF TRIPLE INTEGRALS

For evaluation purpose, I\J;IF(X’Y'Z)dV ..(1)

is expressed as the repeated integral
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j:f yyszzf F(x,y, z)dzdydx ..(2)
where in the order of integration depends upon the limits.

If the limits z; and z, be the functions of (X, y); y, and y, be the functions of x and x;, x, be
constant, then

2 EH(X'y)F( )d -
= 0 X, Y, z)dzody fdx
x'£a %/:I(x) |:lz: flj(‘x,y) |:| E e (3)

which shows that the first F(X, y, z) is integrated with respect to z keeping x and y constant
between the limits z = f;(x, y) to z = f,(X, y). The resultant which is a function of x, y is
integrated with respect to y keeping x constant between the limits y = f,(x) to y = f,(x).
Finally, the integrand is evaluated with respect to x between the limits x = ato x = b.

Note: This order can accordingly be changed depending upon the comfort of integration.

axxty

Example 36: Evaluate H I e*" " 2 dz dy dx.
Solution: On integrating first with respect to z, keeping x and y constants, we get

I -J'J' EX"V a dydx, [Here (x +y) = a, (say), like some constant]
:J(,)aj(.)x %(X+y)+(x+y) _ e(x+y)+0 %jde

:J:J: EZ(XW) _ e(x+y)Bjde

a Eé2X+2y ex+y |j
I 1 %dx, (Integrating with respect to y, keeping x constant)

it

J_a mm( 2x |:| EbZX

On integrating with respect to x,

Sl e e el
Hs 2 4 1H
Eb4a e2a eZa 0 1 1
= - = +eF— -=—-=+1]
He ~2 4 °H % 2 1 ]
_® 3 5 ... 30

OJ —Eg et +¢ 85

/2 _asin®

Example 37: Evaluatej' J' J' zrdrdedz.
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Solution: On integrating with respect to z first keeping r and 6 constants, we get
w2 asing &=r

|:J’OJ’0 (z),2 rdrde

/2 asme

——I J' (a2 - r?)rdrde

1 ”/2D r2 r "

== 45) d8, (On integrating with respect to r)

ato
1 Y2082 [#%sin%0 a“sm“GD
== 0
aJo H 2 Ed
T
a2 .
=—[2sin?6 -sin* 16
49
:a_%gm_r 30 g0
48 2 2 42 E

t
u

w2 . _(P-Dp-3)...
.L sin? xdx = -2 DZ

a3 Ot 3 5mad
. S b o

e lo e*
Example 38: Evaluate J.IJ.O gyj'l log z dz dy dx.

only if piseven

e Jdogy & 0
Solution: J;J; H[; Iogzdzadxdy

[Here z = f(x, y) with z, =1 and z, = ex* ¥

:ijiogyﬁ[fx logz EL%}IZ dxdy

Ist lind
fun.  fun.

|
= ogjyEogzxz Iz dzéT dxdy

exlogeX —1Dogl xdy
)
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[ B (e - 9y
e |Ogy )

J’J’ @x 1)e + 1Rix
:Il Bre —2¢ +xg dy
:Jf%y+1)[logy+2(l—y)giy

| Il
function  function

On integrating by parts,
O 2 ¢ 2 2¢O
Ly 1 O 2y
| =Hogy x = % + +% -2 30
Eogy 5y yal I y Bz TYEY TR T, g

=§Ioge)éb§+e§—|091%+l —I%”de* ¢)-(- 1)5

gé+e—gly—2 ai+2e—e2—1§

2
S P SO S P S |
2 4 4 H

_

= §(1+ 8 — 3¢2)

B

Z X+z

Example 39: Evaluate I II (x +y+z)dxdydz

Solution: Integrating first with respect to y, keeping x and z constant,
0y 020
I = +—+ dxdz
I
O O
= 4 272
flaﬁ)z( ZX + 27 )dxadz
1 2
=[ Eﬂzx— sl
-1 2

:ﬁl glz E)Zzi + 272 diz

4
= r 2dz = 4%
-1 4

1
=0

-1
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ASSIGNMENT 6
Evaluate the following integrals:

(1) ﬁﬁfxzyzdxdydz 2) J'_aafbj'_cc(xz +y? +22)dxdydz
log2 x x+

(3) I:Kﬁ‘romdydxdz (4) L LL Iogye""y"zdzdydx

4.10 VOLUME AS A DOUBLE INTEGRAL
(Geometrical Interpretation of the Double Integral)

One of the most obvious use of double integral is the determination of volume of solids
viz. ‘volume between two surfaces’.

If f(x, y) is a continuous and single valued function £
defined over the region R in the xy-plane with z = f(x, y) /"\
as the equation of the surface. Let [* be the closed curve S c
which encloses R. Clearly, the surface R (viz. z = f(x, y)) \4—7/
is the orthogonal projection of S(viz z = F(x, y)) in the pus
xy-plane.

Divided R into elementary rectangles of area oxoy
by drawing lines parallel to the axis of x and y. On each
of these rectangles errect prisms having their lengths
parallel to the z-axis. The volume of each such prism is o 4
Z0X 0y.

(Division of R is performed with the lines x = x; (i = 1, ﬂ }:/[/./r,
2, .., mand y=y(j=12 ..., n). Through each line rﬁj/%?z{”‘/:’}

. RV AYs

X = X;, pass a plane parallel to yz-plane, and through {43R, yr M1 4
each line y = y;, pass a plance parallel to xz-plane. The
rectangle AR; whose area is AA; = Ax; Ay; will be the Fig. 4.49

base of a rectangle prism of height f(x, h), whose
volume is approximately equal to the volume between the surface and the xy-plane x = x; — 1,

X=X,;y=Yy,-1y=y,.Then i:zl f (Ei,—,nij)AXi [Ay; gives an approximate value for volume V of
j=1

the prism of the cylinder enclosed between z = f(x, y) and the xy-plane.
The volume V is the limit of the sum of each elementary volume z dxdy.

D = = =
\Y gXL}gZ > z20x 0y yz dx dy y f (x, y)dA
Yy —

Note: In cyllidrical co-ordinates, the equation of the surface becomes z = f(r, ), elementary area dA = r dr d0

and volume = [ f(r,8)rdrd®
R
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Problems on Volume of a Solid with the Help of Double Integral

Example 40: Find the volume of the tetrahedron bounded by the plane %+ Y +Z=1 and

b ¢
the co-ordinate planes. [Burdwan, 2003]
. . X,Y . z X yQd
- —+=+=-=1 0 z=f(xy)=cg-=-=
Solution: Given, a b o ( Y) % a ba ..(1)

If f(x, y) is a continuous and single valued function over the region R (see Fig. 5. 50) in the
xy plane, then z = f(x, y) is the equation of the surface. Let C be the closed curve that is the
boundary of R. Using R as a base, construct a cylinder having elements parallel to the z-axis.

This cylinder intersects z = f(x, y) in a curve [, whose projection on the xy-plane is C.

Z Z=C(1- xla-ylb) = f(x, y)

| H |

Fig. 4.50 Fig. 4.51
The equation of the surface under which the region whose volume is required, may be
X _yd

written in the form (1) i.e., z:cal——
@ 2 pE

Hence the volume of the region :IjadA :J'J'c %1 —% —%%dx dy
R R

The equation of the inter-section of the given surface with xy-plane is

If the prisms are summed first in the y-direction they will be summed from y = 0 to the line

yff-23

a bH-X
Therefore, \% =J'0Jj§ agc %l -X_ %Edydx

a
b(1-x/a)

(e Xy Y
_.[)Q/ a 2ba ax

0



42

—cb X2 X3|j
5 2a  6aH

—bcul a2+ a® O abe
B 22 6aH 6

Example 41: Prove that the volume enclosed between the cylinders x? + y? = 2ax and

12842 '

9 _ .
zc=2ax1s 15

Solution: Let V be required volume which is enclosed by the cylinder x? + y? = 2ax and the
paraboloid z? = 2ax.

Only half of the volume is shown in Fig 5.52. z
Now, it is evident from that z =./2ax is to be evaluated
over the circle x? + y? = 2ax(with centre at (a, 0) and radius  Z%=2ax
a.
Here y varies from -./2ax-x? to +/2ax —x? on the
circle x? + y? = 2ax and finally x varies from x =0 to x = 2a 22.0)
a
0,0 ’
Vo2 a ax—x2 dxd . ©.0) (a, 0)
0 _J’;J‘-sz(—-%[z]xyasz_(x’y) 4
X2+ Y2 = 2ax
~2ax—x? 0
r q' J2ax Edydx
Fig. 4.52

a J2ax-x2 [
= Jf J2ax a’o dyadx
= ﬁa v2ax |Y|ozax_x2 dx = ﬁa\/Zax\/Zax - x2dx

= 4\/2arax\/2a—xdx
0

Let x = 2asin?@, so that dx = 4asin® cosd d. Further, for x=0,0=0 0O
O

o

X=23,0=—.
25
0 V= 4\/_-[ 2asin?0+/2acosO asinBcosOdo

1T
= 64a3L/25in3900529d9
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CeapPY(P-3)(a-1)@-3).. .
=64 (b+a)prq-2).. P=3a=2
(3-1)1 _128a°
508 15

=64a°

Problems based on Volume as a Double Integral in Cylindrical Coordinates

Example 42: Find the volume bounded by the cylinder x? + y?> = 4 and the hyperboloid
X2+y?-72=1.

Solution: In cartesian co-ordinates, the section of the given hyperboloid x? + y?> — z> = 1 in
the xy plane (z = 0) is the circle x* + y? = 1, where as at the top and at the bottom end (along
the z-axis i.e, z = +./3) it shares common boundary with the circle x? + y? = 4 (Fig. 5.53 and

5.54).
Here we need to calculate the volume bounded by the two bodies (i.e., the volume of

shaded portion of the geometry).

\
N\ | /7

=,

(G

Z200NN

DNSONN

SN

Z
S

77

7/,
S

Fig. 4.54

Fig. 4.53

(Best example of this geometry is a solid damroo in a concentric long hollow drum.)
In cylindrical polar coordinates, we see that here r varies from r =1 to r = 2 and 6 varies

from 0 to 21t

0 V:Zgj'zdxdygzZg]'f(r,e)rdrdeg
Tt
:ngmrdrdeg & X2+y2_22_1 0 Z:\/X2+7y2_1)

n2 1 30
= J’: Hr;Ed(rz_l)ZHde
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:2ﬁﬁ"de:4nﬁ.

Example 43: Find the volume bounded by the cylinder x?> + y?> = 4 and the planes y + z
=4and z=0. [KUK, 2000; MDU, 2002; Cochin, 2005; SVTU, 2007]

Solution: From Fig. 5.55, it is very clear that z = 4 — y is to be integrated over the circle x* +
y?2 = 4 in the xy-plane.
To cover the shaded portion, x varies from -/4-y? to /4 -y? andy varies from - 2 to 2.
Hence the desired volume,

v =sz _%zdxdy
- J’_ZZLW@—y)dxdy
=2f2(4—y)§[;)wdxgdy
=2f2(4—y)\/mdy
:2J'_22 HJ4a-y? -y Ja-y? Hly X Fig. 4.55
:8fzwdy—o

(The second term vanishes as the integrand is an odd function)

2 if
=8 31)/74 4 +ésin‘1%

0
g 2 2 a,

=16t

ASSIGNMENT 7

1. Find the volume enclosed by the coordinate planes and the portion of the plane
IXx + my + nz = 1 lying in the first quadrant.

2. Obtain the volume bounded by the surface z = c@l—zagl—xa and the quadrant of
a b
X2 y2
the elliptic cylinder o +b—2 =1

[Hint: Use elliptic polar coordinates x = arcos6, y = brsin@ ]
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4.11 VOLUME AS A TRIPLE INTEGRAL
Divide the given solid by planes parallel to the coordinate plane into rectangular
parallelopiped of elementary volume &xdydz.

Then the total volume V is the limit of the sum of all elementary volume i.e.,

V=Lt 355 xdydz :-[[ dxdy dx

dy -0
5z-0

Problems based on Volume as a Triple Integral in cartesian Coordinate System
Example 44: Find the volume common to the cylinders x? + y? = a? and x? + z? = a2

Solution: The sections of the cylinders x? + y? = a2 and x? + z2 = a2 are the circles x? + y? = a?
and x? + z2 = % in xy and xz plane respectively.

Here in the picture, one-eighth part of the required volume (covered in the 1st octant) is
shown.

Clearly, in the common region, z varies from 0 to /a2 —x2 i.e., /& —1x? —0y? , and x and
y vary on the circle x> + y? = a2,
The required volume

,=JaZ—x2 2=\/a2—x2—0y2 z
0 V= sr r f dz dy dx
0 Jy,=0 =0 ol a i
a Ja-x — el
= BJ;J; (z|0“a )dydx ¢
a[]Ja2-x? 0 B...
= BL H[(; Ja - x ddex 2 a
o xX=0 y
B 0 o
oz —z\E O (a0,0) x=a A
—8.]'0 (\/a X )H’O ddex .
X Fig. 4.56
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Example 45: Find the volume bounded by the xy plane, the cylinder x? + y? = 1 and the

plane x +y +z = 3.

Solution: Let V(x, y, z) be the desired volume enclosed laterally by the cylinder x*> + y? =1

(in the xy-plane) and on the top, by the plane x + y + z = 3 (= a say).

Clearly, the limits of z are from 0 (on the P
xy-plane) to z= (3- x-y) and x and y vary on the
circle X2 +y>=1

W 3-X—
0 V(x.y.2) =ﬁ1_l-ﬂj; " dzdydx
2 3 X-y
r L ﬂ )dydx

1 [1x2 0
:I—lﬁr—ﬂ(S - X —y)ddex

_r % ) _y_2 i{l—x2
= y — Xy dx
= 2
X Fig. 4.57
0 I=‘r(6x\/1—x2 —2x\/1—x2)dx
-1
On taking x = sin®, we get dx = do; Forx=-1,6= —gg
0
Forx=1 6= L
2 0

Thus,

V = I 6\/1 sin?0 25in&/1—sin29)cosede
) )
=I (600526—25|n600526)d6
-/ 2

2 2
=6><2J' coszede—ZJ'n/ sinBcos20do
0 -1/2
Ist lind

_ 3 w2
:12(221)%(+2005 0

‘ 2
3 -T/2

=3nt+=x0=3m
3

Using meospede =% X E{g only if pis eveng and
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3 fn+1
J'f (x) f"(x)dx = . +(i() for Ist and IInd integral respectively

22

Example 46: Find the volume bounded by the ellipsoid a—+ ;;2 7 =1.

Solution: Considering the symmetry, the desired volume is 8 times the volume of the ellipsoid

into the positive octant. z
The ellipsoid cuts the XOY plane in the ellipse

X2 y?
¥+§=1 andz=0

Therefore, the required volume lies between the

ellipsoid
2 2
z=¢ /1— XL
b2

and the plane XOY (i.e.,, z = 0) and is bounded on the
sides by the planes x=0and y =0

Hence, V= 8I J)FI L dZdde Fig. 4.58
—BIfF 1—X2 dydx

o0 ¢ . O 0 Ki _X_2|:|:g|:|
_8J(;Hj(;b,/a ydyadx Ha ing %l aza bH
7 -2 o
v=8% PN Y +a—zsin‘1XD dx
blog 2 2 ag

aJsing formula J\/aZ - x2dx —5 2 -x2 + tan‘lﬁa
2 a
=8 sm‘ll X
bl e

_AC AT gy = 2TC (Fo L X

[ aax Ib% Ex, a=bf1-
0_1x0

=ame- TR

_4

= Tuabc.

3
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dxdydz
-y -

taken throughout the volume

2

Example 47: Evaluate the integral J'J'J'\/
a z

of the sphere.

Solution: Here for the given sphere x? + y? + z2 = a2, any of the three variables x, y, z can be

expressed in term of the other two, say z =+ a —x? -y2.
In the xy-plane, the projection of the sphere is the circle x? + y? = a2,
(aZ XZ ¢a2 XZ y2 dXdde

Thus, I= II I JZ -y -7

07 Q77
:BI:B[oa %[Oa yiLz dede 2= @-x-y)

z
al /e~ } ng 0
_8.[5[ %lnlaoadygdx c /Z:Jaz—xz—yz
a[] J@-< 0
=8 i _11_ i —10 d d
J;H[;) (sin sin"10) ypx ) Y
// // 7
- -x2 AL’/ ,’4/7//
=8 dy dX am Sdoa Ddx Circle x2+ y2= a2
ZI Er E I / Fig. 4.60
:4n0mdx:4n5(g—“ a22_X2 +a—225in‘1§§
U Lo

= 4n§)+a_1[5 | = -,-[2a2

Example 48: Evaluate _[_[_[(x +y+ z)dx dy dz over the tetrahedron bounded by the planes
x=0,y=0,z=0and x+y+z=1

Solution: The integration is over the region R(shaded portion) bounded by the plane x = 0,
y=0,z=0andtheplanex+y+z=1

The area OAB, in xy plane is bounded by the lines x +y =1, x=0,y=0

Hence for any pt. (x, y) within this triangle, z goes from xy plane to plane ABC (viz. the
surface of the tetrahedron) or in other words, z changes from z=0to z =1 - x - y. Likewise
in plane xy, y as a function x varies from y =0to y =1 — x and finally x varies from 0 to 1.

whence, I =[[f(x+y+2z)dxdydz

overR

rHrHBJ’H y X+y+z dzadyadx
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1-x-y

:J;ajj‘xax+y)z+z—;ao dydx

1 1X
J'J' 1 x —y)(1+x+y)dydx

ASSIGNMENT 8

Ody dx

:Laﬁ_X§X+y J(1-x-y)+ (1_X2_y)za

1. Find the volume of the tetrahedron bounded by co-ordinate planes and the plane

X, )b/ +Z =1, by using triple integration
c

a

2. Find the volume bounded by the paraboloid x? + y? = az, the cylinder x?> + y? = 2ay and

the plane z = 0.

5.12. VOLUMES OF SOLIDS OF REVOLUTION AS A DOUBLE INTEGRAL

Let P(x,y) be any point in aregion R enclosing an elementary
area dx dy around it. This elementary area on revolution
about x-axis form a ring of volume,

OV = m(y + dy)? — y?] & = 2mydxdy  ...(1)
Hence the total volume of the solid formed by revolution
of this region R about x-axis is,

V:J'£2ledxdy .2

Similarly, if the same region is revolved about y-axis,
then the required volume becomes

V = [[2mxdxdy ..
R

>
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Expressions for above volume in polar coordinates about the initial line and about the

pole are [f2mw?sinBdrde and [[2rr2cos@drdd respectively.
R R

Example 49: Find by double integration, the volume of the solid generated by revolving

the ellipse % + iz =1 about y-axis.

2 2 G S
Solution: As the ellipse X—2 +Z—2 =1 is symmetrical about the C/—
a R

y-axis, the volume generated py the left and the right halves
overlap.
Hence we shall consider the revolution of the right-half ABD

2
for which x-varies from 0 to a, / 1- Z—z and y-varies from - b to b.

ad V= J'J' 2T[xdxdy

_ b D(Z @\/ﬂ _ T[aZ b B
=2m Ny dy—b—z-l'_b(b2 yz)dy

2

-anf [l o=y

_4_,
—3mb.

Example 50: The area bounded by the parabola y? = 4x and the straight lines x =1 and y
=0, in the first quadrant is revolved about the line y = 2. Find by double integration the

volume of the solid generated.

Solution: Draw the standard parabola y? = 4x to which

the straight line y = 2 meets in the point P(1, 2), Fig. 5.64.
Now the dotted portion i.e., the area enclosed by

parabola, the line x =1 and y = 0 is revolved about the line

y =2

O The required volume,

2%
v =‘[)1J; 2n(2 - y)dxdy

3

_ZHI%y—y?E dx = 21TJ' 4\/——2x
20 =
gl

(B 3/2 1OT[

:2T[

Y y2=4x
y=2
2-y71P(,2)
x=1
=0
4 X
N
Y
Fig. 4.64
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Example 51: Calculate by double integration, the volume generated by the revolution of
the cardiod r = a(1 — cos@) about its axis.

Soluton: On considering the upper half of the cardiod, because due to symmetry the lower
half generates the same volume. y

1t a(l-cosB)

0 II 2mr? sinBdr do

0 =12
a(1-cosB)
—2T[I sinBdo - 6 620
— \J - >X

r3

ZLa 1—cosessined6
3 Jo

~ 2m3|(1—c056)4|n_ 81’

= =5

3 ‘ 4 Fig. 4.65

b
Example 52: By using double integral, show that volume generated by revolution of

cardiod r = a(1 + cos@) about the initial line is %Tw‘

Solution: The required volume

1t a(l+cos6)

IJ' 212 sinBdr do

Y
[yl |j(1+cose) ) 4
=21 sin6do 8 =12
R
:ZHJ;na3(1+cose)Ssinede 0=n . 6=0
_ 2 S_ (1+cose)* g \—/
3 A 4 B
2133 2°0_ 8ma® .
- 2 L Fig. 4.66
3 @ 45 3 9

ASSIGNMENT 9

1. Find by double integration the volume of the solid generated by revolving the ellipse
X2 Y2 .
po + Z—z =1 about the X-axis.

2. Find the volume generated by revolving a quadrant of the circle x* + y? = a2, about its
diameter.

3. Find the volume generated by the revolution of the curve y?(2a — x) = x3, about its
asymptote through four right angles.

4. Find the volume of the solid obtained by the revolution of the leminiscate r?> = a?cos28
about the initial line.




52

4.13. CHANGE OF VARIABLE IN TRIPLE INTEGRAL

For transforming elementary area or the volume from one sets of coordinate to another, the
necessary role of ‘Jacobian’ or ‘functional determinant’ comes into picture.

(a) Triple Integral Under General Transformation

Here m f(x,y,2)dxdydz = [[f F(u,v,w)]J]dudvdw; where J = g((x Y, Z))( 0) (1)
R(x,y,2) R'(u,v,w) uv,w,

Since in the case of three variables u(x, y, z), v(X, y, z), w(X, Y, z) be continuous together

with their first partial derivatives, the Jacobian of u, v, w with respect to x, y, z is

defined by
du v w
0xXx O0X 0X
ou v w
dy oy o9y
ou ov ow
0z 0z 0z

(b) Triple Integral in Cylindrical Coordinates

Here 1 (x,y,z)dxdydz —I”F(r 0,z)|J|drdedz, where [J] =r

The posthlon of a point P in space in cylindrical coordinates is determined by the
three numbers r, 6, z where r and 8 are polar co-ordinates of the projection of the point
P on the xy-plane and z is the z coordinate of P i.e., distance of the point (P) from the
xy-plane with the plus sign if the point (P) lies above the xy-plane, and minus sign if
below the xy-plane (Fig. 5.67).

Z
Z
AO
iV
s P N
P(x, y, 2) T1sl
ML)
z
AO
o) Y o) 1%
0 r 5 %/
R
4 y Q r A8
X Ar
X
Fig. 4.67 Fig. 4.68

In this case, divide the given three dimensional region R* (r, 6, z) into elementary
volumes by coordinate surfaces r = r;, 8 = 6;, z = z, (viz. half plane adjoining z-axis,
circular cylinder axis coincides with Z-zxis, planes perpenducular to z-axis). The
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curvilinear ‘prism’ shown in Fig. 5. 68 is a volume element of which elementary base
area is r ArAB and height Az, so that Av = r Ar A8 Az.

Here 0 is the angle between OQ and the positive x-axis, r is the distance OQ and z is
the distance QP. From the Fig. 5.62, it is evident that

X =rcosh, y = rsind, z =z and so that,

coso sin@ 0

=|-rsin® rcos® 0O|=r
(2
u, v, w 0 0 1 @)

JDx,y,zD

Hence, the triple integral of the function F(r, 6, z) over R” becomes

Vv :Ii{rvevzl):(r,e,z)rdrdedz ...(3)

(c) Triple Integral in Spherical Polar Coordinates

Here V = f(xy.z)dxdydz = [[[F(r,6,¢)|)|drdedy, where |I] = r’sin®
R R

The position of a point P in space in spherical coordinates is determined by the
three variables r, 6, @ where r is the distance of the point (P) from the origin and so
called radius vector, 0 is the angle between the radius vector on the xy-plane and the
x-axis to count from this axis in a positive sense viz. counter-clockwise.

For any point in space in spherical coordinates, we have
0<r<o,0<B<mM0<Q<2nT

Divide the region ‘R’ into elementary volumes AV by coordinate surfaces, r = constant
(sphere), 6 = constant (conic surfaces with vertices at the origin), ¢ = constant (half
planes passing through the Z-axis ).

To within infinitesimal of higher order, the volume element Av may be considered
a parallelopiped with edges of length Ar, r A8, rsin® A@. Then the volume element
becomes AV = r?sin® Ar A8 A@.

z s
V4
=4
S
. Ar
<\JQ(P |
P (X, ¥,.2) Fsim~_/ )V \R o]
P7N
0 r | | rA\@
) JAtC) 1 Q
0 ? i
0 '<1|—z
o) Y : |
(0) Pl
[ ~\~ - 11 -
X 90° x/ ¢ a5~ Y
A /490 ST
L .
/ 4 y L

Fig. 4.69 Fig. 4.70
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For calculation purpose, it is evident from the Fig. 5.69 that in triangles, OAL and

OPL,

X = OL cos@ = OP cos(90 — 6) . cos@ = rsind cos,

y=0L sing= 0P sinB@.sin@=rsin@sing,

z=rcos®.

alx z) sinBcos@ sinBsing  cosO

J=———+=|rcos@cos@ rcosBsing -rsind =r’sin@

Thus, a(r.6,0) A .
9@ |-rsinBsing rsinBcosp 0

Problems Volume as a Triple Integral in Cylindrical Co-ordinates

Example 53: Find the volume intercepted between the paraboloid x? + y? = 2az and the
cylinder x? + y? — 2ax = 0.

A
Solution: Let V be required volume of the cylinder
x? + y? — 2ax = 0 intercepted by the paraboloid x? + y? = 2az.
Transforming the given system of equations to polar- ! X+ y?=2az
cylindrical co-ordinates. ::: A Paraboloid
|
X =rcos6 ii:
Let Y =rsinB0sothat V(x,y, 2)=V(r,8,2) 1y/
z=12 H (@ 0)f o+ >
9 Y

X%+ yZ—Zax: 0

By above substitution the equation of the paraboloid becomes

r - . lind
r2=2az O 2 =, and the cylinder X2 + y2 = 2ax gives eylinder
2 _2arcosB =0 O r(r- 2acosB) =0 with r =0 and _
r = 2acosb. Fig. 4.71

2

r . .
Thus, it is clear from the Fig. 5.71 that z varies from 0 to % and r as a function of 0 varies

from 0 to 2acosB with 6 as limits 0 to 2t Geometry clearly shows the volume covered under

the +ve octant only, i.e. %th of the full volume.
8=1/2 r=2acos® _z=r’/2a
=V' = I r r rdzdrdd, as|J|=r
(XyZ) (r8.2) r=0 2=0

/2 [] _2acos8 "2/23

J' B[' zO rdrEdG
_4-[11/25_230089_ rade

2acosf

w2 4
1™ a0

:4_-[ L
2aJo 4

0
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= 4i 24a cos*0do
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Example 54: Find the volume of the region bounded by the paraboloid az = x> + y? and
the cylinder x? + y? = b2 Also find the integral in case when a=2and b = 2.

Solution: On using the cylindrical polar co-ordinates (r, 8, z) with x = rcos6, y = rsin@, so

2
that the equations of the cylinder and that of the paraboloid are r=band z = L respectively.
a

See Fig. 5.72, only one-fourth of the common volume is shown.

2
. . . r . .
Hence in the common region, z varies from z=0to z=-— and r and 0 varies on the circle

T
from 0 to b and 0 to 5 respectively.

O The desired volume

V=4Lﬂ2ﬁﬁ2/ardrd6dz
= 4J:T/2 a’ob rdr Eﬁyadz%G
_ v2[] r20
= J; Hroj H—adrade

J,n/zljzth
4 V2 2
A by o
a 4 | 2a
As a particular case, when a =2, b = 2, then
4
V:ﬂ:M[
2x%x2

Problmes on Volume in Polar Spherical Co-ordinates

a

Z 4

| x%+ y2= az
T = (Paraboloid)

<

X2+ y?= b2
(cylinder)

Fig. 4.72

Example 55: Find the volume common to the sphere x2 + y? + z2 = a? and the cone x? + y? = 72

OR

Find the volume cut by the cone x? + y? = z? from the sphere x? + y? + z2 = a2,
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Solution: For the given sphere, x? + y? + z2 = a% and the cone x? + y? = 72, the centre of the
sphere is (0, 0, 0) and the vertex of the cone is origin. Therefore, the volume common to the

two bodies is symmetrical about the plane z = 0, i.e. the required volume, V =2[[[dxdydz

X =rsinBcos
In spherical co-ordinates, we have y =rsin@sin@J=r?sin®

z=rcosb H
Thus, x? + y> + z2 = a® becomes r’=a’ie,r=a
and x% + y? = 7% becomes r? sin?0 (cos’@ + sin’g) = r’cos?0
ie., sin20 = cos?0 i.e. B = V4. Z 4

Clearly, the volume shown in the figure (Fig. 5.73) is
one-fourth, i.e. in first quadrant only and, in the common
region,

r varies from 0 to a,

O varies from 0 to —

N|:|-l>

O
g
O
@varies from 0 to B
g

Hence the required volume,

V= 2§1L"/2L"/4Larzsinedrdedcpg
w2 /4

J' J' Elj'rzdrgsmeded(p

= 8.[) J(; Egasineded(p

8 2
= a30 [—cose]g/4

3

8 al 1 Opv?
=S¢ -—gf d

3 0

2
- 4ma @-LD Fig. 4.74
3 NA=
Alternately: In polar-cylindrical co-ordinates, intersection of the two curves x? + y? + z2 = &2
and x> + y?>=Z?results in 22+ z2=a? or 72 = &
Further, x? +y?=a? -7> = a2 - a— % Or :%, i.e. r varies from 0 to %

b a/J—
Hence, V= Zr a? —r? —r)rdrde
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| . P lies on the cone whereas Q lies on the sphere as a function of (r, 0)

a/f

—ZI rva? —r2—r2 J' dGHdr
5 O 1 10 4 30
01 372 P02 i 2 _ 2 _r2); 2 _ 2
=4n—=(a2 -r2)" " - — sincer(a® —ro)2 =—3r(a” —-r —dla* -r° 2
F e -2 e e v = (e - e el -
:4T[|:| la_S_la_(i a_SD
H322 3242 3H
:4“33%_15
3 § 2
Example 56: By changing to shperical polar co-ordinate system, prove that
_T N 0
————— —dxdydz-—abc where Vv = fAx,y,z +X +% <1
JII-% ; o) LBl
2
Solution: Taking izug so that —+Z—+Z_<1 O w+v+w?<l
a a c?
y __H
__VID
b D
Z=wO
c g
Now transformation co-efficient, Ox 0x 0x
Jdu ov ow a 00
|J|:g—y g_y g—y:o b 0|=abc
u ov ow
oz 0z 02 19°0°
du odv oOw

. V= J'IJ'\/l——————dxdydz

J'Hm (abc)dudvdw

UVW

To transform to polar spherical co-rodinate system, let u=rsinBcosq,
v=rsinBsing O
W =rcos@ H

Then Vi v, w = (U, v, w): v+ vZ+w?<1,u20,v20, w20} reduces to
Viieg=1{r’<l ie, 0<r<1,0<0<m0<@<2mg
0 ”J’«/l u? - vZ —w?abcdudvdw

UVW
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j bc\/ 1-r?|Jjdrdéde  where |J] = r?sin®
(r.6

vV’

=D

(p:2n|:| n|:|

0 Viieg =4 \/ -r rzdrHsm edead(p
Now put r = sint so that dr = costdt and for r =0, t =0, H

T

r=4,t=—

U
2H
12
0 rgqo—ach'2 ar ar' costsmztcostdtasmed%d(p

:ach'anrE(Z DH2-1) n [smedegd(p

i L il L
0 o2+2)(4-2) 2
-abc.r]TD Dlln mGdGHd(P

T[abcr [-cos6]} do

Tabc mabc 2" Teabc
= 2do= de= .
16 Jj ? 8 Jj ¢ 4

Example 57: By change of variable in polar co-ordinate, prove that

J) 1-x?-y? dzdydx TP

J1-x2-y? -2 T8’
OR

Evaluate the integral being extended to octant of the sphere x* + y? + z2 = 1.
OR
Evaluate above integral by changing to polar spherical co-ordinate system.

Solution: Simple Evaluation:

1x2 y2 dz
I=]d
.r X 0 N

1
\/(1—x2—y)—22 N

1-x2 _1 /1= X2 |:|
I —dexJ; ﬂsm ; Edy

Treating

0
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rdx sinl ————
JI-X -y —y2
rdx Ell‘—ogdy

= X[ Hy) ™ Fx

W1-x2-y2 []
0
Edy, as a=.,1-x>-y?

0

—T[J'lxll—x2 dx
2Jo
NG d TR
= V=X 42 Lsin- X|j, using [Va —x2dx = NE X L & gjpr X
20 2 2 2 2 a
_MGp, lnO_ T
28 22H 8

By change of variable to polar spherical co-ordinates, the region of integration
V={xy2);x+y?+72<1;x20,220,y20}

becomes I=C(r,B,¢;r’<lie0<sr<1, 0<esg,0$(psl2T
X =rsinBcosg,
where y =rsinBsing,Q
z=rcos@ H
a(x.y.z) - _ -
Now J= W = coefficient of transformation = r#sin®.

hene J-J-J-\/l dxd_ydz_22 JJT/ZJJT/er smed rd8do

_ 2 w2[] | [P r2 0. d
I—J’O d(pJ'O Hs'neﬁfoﬁﬁdrﬁde

Let r = sint so that dr = cost dt. Further, when r =0, t= O’H

0 I:Lnlzd(pﬁ) smedeI SInZtE:ostdt

:Lnlzd(pﬁ) desine% EI;—E
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T AVYR, V2
=2, d(pL sin0do

T /2 _ 2
—4J; de(-cos8)

0

J{” _
47, 8
. N VI Vo < :
Example 58: Find the volume of the ellipsoid —2+§+—2 =1 by changing to polar co-
a C

ordinates.

Solution: We discuss this problem under change of variables.

a(x.y.z) _

=X, =ab
a(X.,Y,2) e

Take

@ | X
o<

=Y, -7 so that J =
C

O The required volume,
V =[[[dxdydz :IH|J|dXdeZ

= abc[[[dXdYdZ, taken throughout the sphere X? + Y2+ Z2 = 1.

Change this new system (X, Y, Z) to spherical polar co-ordinates (r, 8, ¢) by taking

X =rsinBcosq,
Y =rsin@sin® 0 o5 that J= M =r2sin®
Z =rcos8 H o(r.6,9) ’

V = abe[([[|J|drdede = abcf [[r*sin6dr dBde
taken throughout the sphere r”’<1, ie. 0<r<1,0<0<m0<@<2m
On considering the symmetry,

/2 /2 1
V = ahc EBJ; %[' a rzdrasinedegd(p
0 0

w2l w2 r3
=8abc —
J(-) EJ-O 3

8 /2
=3 ach;) [-cos G]S/Zd(p

! 0
sin8dédo
) 0

8 /2
=—ab 10d
3a CJ(.) )

w2
= §abc<4 = §abc£ = ﬂTlabc
3 o 3 2 3
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Miscellaneous Problem

Example 59: Evaluate the surface integral | = [[(x3dydz + X%y dzdx + x’zdxdy).
S

where S is the surface bounded by z=0, z=b, x? + y2 = @
OR

By transformation to a triple Integral, evaluate | = ”(x3dy dz + x2ydzdx + x?zdx dy), where
S
S is the surface bounded by z=0, z=h, x* + y?> = a2

Solution: On making use of Green’s Theorem,
b b

I =I_aa-[) (,/a2 -y? )3 dzdy —J'_aa-[) (—,/a2 -y? )3 dzdy

+fa-[)b x2\Ja® — x?dzdx —fafaxz (—\/a2 - X )dz dx
fEY 2 _\2 _r JEY
+J:J'_W(a y?)bdxdy J'_aJ'_Wdedy
Using Divergence Theorem,

I :”J'(sz + X2 +x2)dxdydz

\Y

a[lva®-x% b 0. 0O
=4 2
J'oé'o %’O dszyEfSX dx
2l T by bz d
= J;)go y%fix X

= ZObJ:XZ\/aZ - x2dx

= Ena“b,

Note: As direct calculation of the integral may prove to be instructive. The evaluation of the integral can be
carried out by calculating the sum of the integrals evaluated over the projections of the surface S on the co-
ordinate planes. Thus, which upon evaluation is seen to check with the result already obtained. It should be
noted that the angles a, 3, y are mode by the exterior normals in the +ve direction of the co-ordinate axes.
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Assignmet 1

Ore 0
1. HzH
3 L
" ab

Assignment 2
(X d Dx
ey Y

2. J:J'_fj_x; f (x y)dydx

Assignment 3

422 3 (4 4
3 2. 71‘[(!) —a)
Assignment 4

2 isq units
S 10T

Assignment 5

m’ .
—= units
L 8

2 .
—— units
3 9

Assignment 6

1.1

3. 8m

Assignment 7

1
L 6Ilmn

(Canswers )

~E wm

_abc

asina  yldosa a Ja2-y?

3 [ ] f(xy)dxdy+ [ [ f(xy)dxdy

asina 0

ma la
4 J(; J'% f(x,y)dxdy+Imaf(x,y)dXdy

s eBre

a3

. ~—(m+2) units

12
Tt

_ — units
4

, %aS bc(3 + 2ab? + 2ac?)

8 19

. —log2-—

9 9

On _ 1301
g 240
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Assignment 8

3m’
1. abc/6 2.
2
Assignment 9
4ttab? 2_
2 Sma
3 3

01 1
3 —=log(/2 +1)-=
3. 2réa 4. 7 H/2 g( ) 3

|
U
U

63



